Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase

نویسندگان

  • Sasi Sigawi
  • Oleh Smutok
  • Olha Demkiv
  • Galina Gayda
  • Bohdan Vus
  • Yeshayahu Nitzan
  • Mykhailo Gonchar
  • Marina Nisnevitch
چکیده

A laboratory prototype of a microcomputer-based analyzer was developed for quantitative determination of formaldehyde in liquid samples, based on catalytic chemosensing elements. It was shown that selectivity for the target analyte could be increased by modulating the working electrode potential. Analytical parameters of three variants of the amperometric analyzer that differed in the chemical structure/configuration of the working electrode were studied. The constructed analyzer was tested on wastewater solutions that contained formaldehyde. A simple low-cost biosensor was developed for semi-quantitative detection of airborne formaldehyde in concentrations exceeding the threshold level. This biosensor is based on a change in the color of a solution that contains a mixture of alcohol oxidase from the yeast Hansenula polymorpha, horseradish peroxidase and a chromogen, following exposure to airborne formaldehyde. The solution is enclosed within a membrane device, which is permeable to formaldehyde vapors. The most efficient and sensitive biosensor for detecting formaldehyde was the one that contained alcohol oxidase with an activity of 1.2 U·mL-1. The biosensor requires no special instrumentation and enables rapid visual detection of airborne formaldehyde at concentrations, which are hazardous to human health.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Inkjet Printing of Reducible AgNPs amperometric glucose biosensor Electrodes

The enzymes immobilization of the is crucially effective factor in biosensor preparation. Metal nanoparticles potentially able to immobilize the enzymes according to unique properties including large surface-to-volume ratio, high surface reaction activity, high catalytic efficiency, and strong adsorption ability. A novel and highly sensitive amperometric glucose biosensor was obtained by using ...

متن کامل

Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor

BACKGROUND Accurate, rapid, and economic on-line analysis of ethanol is very desirable. However, available biosensors achieve saturation at very low ethanol concentrations and thus demand the time and labour consuming procedure of sample dilution. RESULTS Hansenula polymorpha (Pichia angusta) mutant strains resistant to allyl alcohol in methanol medium were selected. Such strains possessed de...

متن کامل

Ozone monitoring based on a biosensor concept utilizing a reagentless alcohol oxidase electrode.

An electrochemical method based on the concept of a biosensor for the monitoring of ozone is described for first time. The proposed method includes two parts: a selective sorbent for ozone, that is, eugenol, and a formaldehyde amperometric biosensor mounted into a flow-through cell. Ozone adds rapidly to the double bond of the allyl group of eugenol, which has been immobilized onto a hydrophobi...

متن کامل

A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured an...

متن کامل

Evaluation of Different Functionalized CNTs for Development of Choline Amperometric Biosensor

Choline oxidase (ChOx) was chosen as a model enzyme for evaluating the performance of CNTs’ functional groups for development of enzyme electrodes. CNTs were functionalized with carboxylic acid, amine or amide groups. Carboxylic acid, amine and amide functionalized CNTs were obtained by acid treatment, ethylenediamine or tetraethylenepentamine chemically modification and ammonia plasma treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014